KDD 2022
Last updated
Last updated
表示学习、不平衡学习:Deep learning practice and theory for high-dimensional, sparse, and imbalanced data
知识图谱:International Workshop on Knowledge Graphs: Open Knowledge Network
时间序列:Workshop on Mining and Learning from Time Series -- Deep Forecasting: Models, Interpretability, and Applications
Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries
知识图谱;KGTransformer;
面向复杂逻辑查询的知识图谱Transformer预训练。
AutoFAS: Automatic Feature and Architecture Selection for Pre-Ranking System
搜索;粗排;双塔模型优化;神经网络框架搜索(Neural Architecture Search)
Practical Counterfactual Policy Learning for Top-K Recommendations
数据优化;
问题:对于训练机器学习模型,一项关键任务是通过收集的反馈(例如,评分、点击)来构建训练数据。 然而,从理论和实际经验中可以发现,收集的反馈中选择偏差会导致训练得到的模型有偏,从而导致训练结果是不是最优策略。
Applying Deep Learning Based Probabilistic Forecasting to Food Preparation Time for On-Demand Delivery Service
配送时间预测;
应用概率估计刻画订单出餐时间的不确定性(区别于点估计);提出了S-QL损失函数(基于S-CRPS)
A Framework for Multi-stage Bonus Allocation in meal delivery Platform
应用;物流配送相关;
多阶段送餐奖励框架;优化无人接单问题;
DDEN:A Heterogeneous Learning-to-Rank Approach with Deep Debiasing Experts Network
应用;异构排序;