剪绳子
Last updated
Last updated
问题简述
将 n 拆分为 m 段(m、n 都是整数,且 n>1 and m>1),求可能的最大乘积;
答案需取模 1e9+7(1000000007)
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m - 1] 。请问 k[0]*k[1]*...*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-ii-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
本题与“剪绳子1”的区别仅在于 n 的范围;
对于较大的 n,使用动态规划可能会超时;