studies
  • README
  • algorithms
    • <title - autoUpdate>
    • problems
      • 2021
        • 10
          • 两数之和
          • 两数相加
          • 最长回文子串
          • 盛最多水的容器
          • 三数之和
          • 最接近的三数之和
          • 合并两个有序链表
          • 两数相除
          • 搜索旋转排序数组
          • 接雨水
          • 分隔链表
          • 将数据流变为多个不相交区间
          • 排列硬币
          • 有效三角形的个数
        • 11
          • 下一个更大元素
          • 亲密字符串
          • 数组中重复的数字
          • 二维数组中的查找
          • 替换空格
          • 从尾到头打印链表
          • 重建二叉树
          • 用两个栈实现队列
          • 斐波那契数列
          • 跳台阶
          • 旋转数组的最小数字
          • 矩阵中的路径
          • 机器人的运动范围
          • 剪绳子(整数拆分)
          • 剪绳子
          • 二进制中1的个数
          • 数值的整数次方(快速幂)
          • 打印从1到最大的n位数(N叉树的遍历)
          • 删除链表的节点
          • 正则表达式匹配
          • 表示数值的字符串
          • 调整数组顺序使奇数位于偶数前面
          • 链表中倒数第k个节点
          • 反转链表
          • 合并两个排序的链表
          • 树的子结构
          • 二叉树的镜像
          • 对称的二叉树
          • 顺时针打印矩阵(3种思路4个写法)
          • 包含min函数的栈
          • 栈的压入、弹出序列
          • 层序遍历二叉树
          • 层序遍历二叉树
          • 层序遍历二叉树(之字形遍历)
        • 12
          • 整数拆分
          • 二叉搜索树的后序遍历序列
          • 二叉树中和为某一值的路径
          • 复杂链表的复制(深拷贝)
          • 二叉搜索树与双向链表
          • 序列化二叉树
          • 字符串的排列(全排列)
          • 数组中出现次数超过一半的数字(摩尔投票)
          • 最小的k个数(partition操作)
          • 数据流中的中位数
          • 连续子数组的最大和
          • 1~n整数中1出现的次数
          • 数字序列中某一位的数字
          • 把数组排成最小的数
          • 斐波那契数列-3(把数字翻译成字符串)
          • 礼物的最大价值
          • 最长不含重复字符的子字符串
          • 丑数
          • 第一个只出现一次的字符
      • 2022
        • 01
          • 划分2N个点
          • 正则表达式匹配
          • 删除链表的倒数第N个结点
          • 最大子数组和
          • 最小路径和
          • 爬楼梯
          • 数组中的逆序对
          • 两个链表的第一个公共节点
          • 求0~n-1中缺失的数字
          • 在排序数组中查找数字
          • 二叉搜索树的第k大节点
          • 求二叉树的深度
          • 判断是否为平衡二叉树
          • 数组中数字出现的次数
          • 数组中数字出现的次数
          • 和为s的两个数字
          • 和为s的连续正数序列
          • 翻转单词顺序
          • 左旋转字符串
          • 滑动窗口的最大值
          • 队列的最大值
          • n个骰子的点数
          • 扑克牌中的顺子
          • 圆圈中最后剩下的数字(约瑟夫环问题)
          • 买卖股票的最佳时机
          • 求1~n的和
          • 不用加减乘除做加法
          • 构建乘积数组
          • 把字符串转换成整数
          • 二叉搜索树的最近公共祖先
          • 二叉树的最近公共祖先
          • 大数加法
          • 重排链表
          • 链表中环的入口结点
          • 判断链表中是否有环
          • 二叉树根节点到叶子节点的所有路径和
          • 二叉树中的最大路径和
          • 买卖股票的最好时机(一)
          • 二叉树中和为某一值的路径(二)
          • 二叉树中和为某一值的路径(一)
          • 大数乘法
          • 将升序数组转化为平衡二叉搜索树
          • 重建二叉树
          • 二叉树的最大深度
          • 按之字形顺序打印二叉树
          • 求二叉树的层序遍历
          • 对称的二叉树
          • 最长回文子串
          • 顺时针旋转矩阵
          • 连续子数组的最大和
          • 数字字符串转化成IP地址
          • 链表内指定区间反转
          • 合并两个有序的数组
          • 划分链表
          • 删除有序链表中重复的元素-II
          • 删除有序链表中重复的元素-I
        • 02
          • 无重复字符的最长子串
          • 寻找两个正序数组的中位数
          • K个一组翻转链表
          • 解码方法
          • 二叉树中的最大路径和
          • 完全平方数
          • 括号生成
          • 集合的所有子集(一)
          • 最小覆盖子串
          • 二维数组中的查找
          • 缺失的第一个正整数
          • 第一个只出现一次的字符
          • 求平方根
          • 合并两个排序的链表
          • 求路径
          • 编辑距离(二)
          • 在两个长度相等的排序数组中找到上中位数
          • 合并区间
        • 03
          • 有效的括号
          • 不同的二叉搜索树
          • 验证二叉搜索树
          • 二叉树的完全性检验
          • 螺旋矩阵
          • N皇后问题
          • 链表相加(二)
          • 最长无重复子数组
          • 有重复项数字的全排列
          • 没有重复项数字的全排列
          • 通配符匹配
          • 实现二叉树先序、中序、后序遍历
          • 加起来和为目标值的组合(二)
          • 数独
          • 在旋转过的有序数组中寻找目标值
          • 最长的括号子串
          • 链表中的节点每k个一组翻转
          • 合并k个已排序的链表
          • 有效括号序列
          • 删除链表的倒数第n个节点
          • 三数之和
          • 最长公共前缀
          • 回文数字
          • 反转数字
          • 找到搜索二叉树中两个错误的节点
          • 矩阵的最小路径和
          • 判断一棵二叉树是否为搜索二叉树和完全二叉树
          • 两数之和
          • 判断是不是平衡二叉树
          • 扑克牌顺子
          • 二叉搜索树与双向链表
          • 斐波那契数列
          • 两个链表的第一个公共结点
          • 汉诺塔问题
          • 跳台阶
          • 链表中倒数最后k个结点
          • 单链表的排序
          • 旋转数组的最小数字
          • 二叉树的镜像
          • 数组中出现次数超过一半的数字
          • 数字在升序数组中出现的次数
          • 数组中只出现一次的两个数字
          • 用两个栈实现队列
          • 调整数组顺序使奇数位于偶数前面(一)
          • 反转链表
          • 丑数
          • 把二叉树打印成多行
          • 二叉搜索树的第k个节点
          • 滑动窗口的最大值
        • 04
          • 连续子数组的最大乘积
          • 完全二叉树结点数
          • 拼接所有的字符串产生字典序最小的字符串
          • 矩阵元素查找
          • 丢棋子问题(鹰蛋问题)
          • 寻找第K大
          • 字符串变形
          • 包含min函数的栈
          • 最长上升子序列(三)
          • 最长公共子序列(二)
          • 设计LRU缓存结构
          • 设计LFU缓存结构
          • 数组中的最长连续子序列
          • 判断一个链表是否为回文结构
          • 字符串出现次数的TopK问题
          • 判断t1树中是否有与t2树完全相同的子树
          • 多叉树的直径
          • 把字符串转换成整数(atoi)
          • 压缩字符串(一)
          • 在二叉树中找到两个节点的最近公共祖先
          • 反转字符串
          • 比较版本号
          • 二分查找-II
          • 三个数的最大乘积
          • 寻找峰值
          • 最大正方形
          • 岛屿数量
          • 旋转数组
          • 最大数
          • 进制转换
        • 05
          • 放苹果
          • 验证IP地址
          • 旋转字符串
          • 栈和排序
          • 把数字翻译成字符串
          • 合并二叉树
          • 数组中的逆序对
          • 最小的K个数
          • 二进制中1的个数
          • 字符串的排列
          • 正则表达式匹配
          • 序列化二叉树
          • 字典树的实现
          • 和为K的连续子数组
          • 兑换零钱(一)
          • 最长公共子串
          • 接雨水问题
          • 阶乘末尾0的数量
          • 分糖果问题
          • 01背包
        • 06
          • 编辑距离
          • 路径总和
          • 路径总和II
          • 三角形最小路径和
          • 买卖股票的最佳时机
          • 买卖股票的最佳时机II
          • 买卖股票的最佳时机III
          • 重排链表
          • 乘积最大子数组
          • 打家劫舍
          • 打家劫舍II
          • 最长递增子序列
          • 零钱兑换
          • 打家劫舍III
          • 路径总和III
          • 一和零
          • 零钱兑换II
          • 链表的中间结点
          • 分割数组
        • 07
          • 二叉树的最大深度
          • 二叉树的最小深度
          • 求根节点到叶节点数字之和
          • 两数之和II-输入有序数组
          • 重复的DNA序列
          • 搜索二维矩阵 II
          • 二叉树的所有路径
          • 字符串中的单词数
          • 从叶结点开始的最小字符串
        • 09
          • 平衡二叉树
          • 整数除法
          • 山峰数组的顶部
          • 数组中的第K大的数字
          • 判定字符是否唯一
          • 判定是否互为字符重排
        • 10
          • 电话号码的字母组合
          • 括号生成
          • 合并K个升序链表
          • 下一个排列
          • 最长有效括号
          • 在排序数组中查找元素的第一个和最后一个位置
          • 组合总和
          • 组合总和II
          • 全排列
          • 全排列II
          • 字母异位词分组
          • x 的平方根
          • 反转链表
          • 数组中的第K个最大元素
          • 滑动窗口最大值
  • Notes
    • 数据结构与算法
    • 深度学习
    • 机器学习
    • 自然语言处理
    • 计算机视觉
    • Python
    • Cpp
    • Linux
    • 大数据
    • Wiki
    • Notes
    • Todo
    • note_template
    • _archives
      • 2022
        • 04
          • GitBook 使用指南
          • Hive SQL 常用操作
          • 常用 LaTeX 公式
          • Markdown 语法备忘
          • BERT+CRF 等备忘
        • 05
          • Attention
          • BERT 常见面试问题
          • CNN
          • BERT + CRF
          • Obsidian
          • RNN
          • Sentence-BERT
          • Transformer Wiki
          • Transformer 常见问题
          • XGBoost 学习笔记
          • 装饰器的本质
          • 不平衡学习专题
          • 使用爱因斯坦标记法操作张量
          • 向后兼容(Backward-Compatible)的表示学习
          • 基于互信息的表示学习
          • 对比学习
          • 损失函数
          • 激活函数
          • 数据不平衡专题
          • Do We Really Need a Learnable Classifier at the End of Deep Neural Network?
          • 过拟合与正则化
          • 预训练模型的轻量化微调
        • 06
          • HuggingFace 套件离线使用方法
          • KDD 2022
          • Linux 后台执行
          • awk常用示例
          • Linux 解压缩
          • Markdown 简历工具
          • NLP 任务与应用
          • git-subtree 的基本用法
          • git 的基本使用
          • python 国内镜像源
          • class method 中 self 的含义
          • 常见面试问题
          • SMART Loss
          • 需求评估模型
        • 07
          • Mac 环境配置
          • PET 模型实践
          • PyCharm 常用配置
          • Shell 脚本备忘
          • PySpark SQL 使用指南
          • Python 函数声明中单独的正斜杠(/)和星号(*)是什么意思
          • 类变量、成员变量,与注解
          • 印尼语 NLP
          • 快捷键记录
          • 深度学习环境配置
          • 深度学习编程
          • 知识图谱概述
        • 08
          • Docker 学习笔记
          • Github Action 备忘
          • Python 容器基类的使用
          • SQL 字符串处理
          • glob 语法备忘
          • 标签体系构建
        • 09
          • WSL2 使用记录
          • dataclass 使用记录
          • requirements.txt 语法备忘
          • Python 标准项目实践
          • 设计模式 - 工厂模式
          • 设计模式 - 建造者模式
          • 设计模式
        • 10
          • Transformer/BERT 常见变体
          • GBDT/XGBoost 备忘
          • 从暴力递归到动态规划
          • 关系抽取
          • 树形递归技巧
          • 滑动窗口模板
          • 简历书写技巧 (算法)
          • 算法面试笔记
          • 语言模型
          • 链表常用操作备忘
        • 12
          • NER
          • NLP 标注工具
          • Jupyter & IPython 使用备忘
          • Label Studio 使用记录
          • NLP 领域术语 Wiki
          • Node.js 环境搭建
          • 基于 BERT/MLM 的查询扩展方法
          • Query 分析指南
          • Query 扩展 (电商领域)
          • query 理解参考资料
          • Query 纠错
          • 低资源训练
          • 同义与上下位关系挖掘
          • 同义词挖掘
          • 基于用户行为数据的同义词挖掘方法 (英文)
          • 实验报告模板
          • 搜索与 NLP
          • 搜索指标
          • 搜索相关阅读
          • 常见的文本相似度计算
          • 电商领域的 NER
          • 电商 NER 标签体系
          • 电商搜索
      • 2023
        • 01
          • PySpark 笔记
          • Windows 使用备忘
          • Hive/Spark SQL 常用查询记录
          • 基于 SQL 计算信息熵与信息增益
          • Hive/Spark/Presto SQL 备忘
          • 数仓基础概念
        • 02
          • SQL优化之暴力扫描
          • Transformer与长度外推性
          • Transformer 的优势与劣势
        • 03
          • Hive 常用 SQL 备忘
        • 05
          • 转正申请
        • 06
          • huggingface 套件使用备忘
          • LLM 应用收集
          • LLM 训练方案整理
Powered by GitBook
On this page
  1. algorithms
  2. problems
  3. 2021
  4. 11

顺时针打印矩阵(3种思路4个写法)

Previous对称的二叉树Next包含min函数的栈

Last updated 2 years ago

问题简述

输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
详细描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。

示例 1:
    输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
    输出:[1,2,3,6,9,8,7,4,5]
示例 2:
    输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
    输出:[1,2,3,4,8,12,11,10,9,5,6,7]

限制:
    0 <= matrix.length <= 100
    0 <= matrix[i].length <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shun-shi-zhen-da-yin-ju-zhen-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路1:螺旋遍历

  • 循环遍历 4 个方向的路线,中间做好边界判断(虽然思路简单,但是写起来很容易出错);

Python:写法1(更朴素)
class Solution:
    def spiralOrder(self, matrix: [[int]]) -> [int]:
        """"""        
        ret = []
        if not matrix or not matrix[0]:
            return ret

        m, n = len(matrix), len(matrix[0])  # m行n列
        # 设置左、右、上、下边界
        l, r, t, b, = 0, n - 1, 0, m - 1

        while True:
            # 依次遍历 4 个方向
            # 因为最后一趟遍历哪个方向都有可能,所以需要 4 个 break

            # left to right, top+=1
            for i in range(l, r + 1):
                ret.append(matrix[t][i])
            t += 1
            if t > b:
                break

            # top to bottom, right-=1
            for i in range(t, b + 1):
                ret.append(matrix[i][r])
            r -= 1
            if l > r:
                break

            # right to left, bottom-=1
            for i in range(r, l - 1, -1):  # 逆序
                ret.append(matrix[b][i])
            b -= 1
            if t > b:
                break

            # bottom to top, left+=1
            for i in range(b, t - 1, -1):  # 逆序
                ret.append(matrix[i][l])
            l += 1
            if l > r:
                break

        return ret
  • 写法 1 的逻辑足够清晰,但不够通用(优雅),比如要遍历 8 个方向时;

  • 另一种写法会预先定义各方向的 step,详见代码;

Python:写法2(更优雅)
class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        if not matrix or not matrix[0]:
            return []

        # 4 个方向的 step
        steps = [(0, 1), (1, 0), (0, -1), (-1, 0)]
        m, n = len(matrix), len(matrix[0])

        # 法1)使用一个 set 或矩阵记录已经访问过的位置
        # visited = set()
        # visited = [[False] * n for _ in range(m)]  # m行n列
        # 法2)直接在 matrix 上修改访问过的位置
        visited = 10001

        ret = []
        i, j = 0, 0  # 记录当前访问的位置
        k = 0  # 已经访问过的位置数量
        d = 0  # 方向标记
        while k < m * n:
            ret.append(matrix[i][j])
            matrix[i][j] = visited
            # visited.add((i, j))
            # visited[i][j] = True
            k += 1

            # 下一个位置
            nxt_i, nxt_j = i + steps[d][0], j + steps[d][1]
            # 判断下一个位置是否合法,或是否访问过
            if not 0 <= nxt_i < m or not 0 <= nxt_j < n or matrix[nxt_i][nxt_j] == visited:
                # 如果不合法或已经访问过,进入下一个方向
                d = (d + 1) % 4
                nxt_i, nxt_j = i + steps[d][0], j + steps[d][1]
            i, j = nxt_i, nxt_j

        return ret

思路2:层层递归

  • 每次遍历完最外圈后,递归遍历下一圈;

Python
class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        """"""
        def dfs(M):
            # 注意:这里除了要判断 M,还要判断 M[0],因为之后代码中的切片操作可能会使行数据为空列表 []
            if not M or not M[0]: return []

            m, n = len(M), len(M[0])

            # 如果最内圈是一行或一列,那么该行/列的遍历方向一定是 左→右 或 上→下
            if m == 1:
                return M[0]
            if n == 1:
                return [row[0] for row in M]

            # 最外一圈的数据
            ret = M[0] \
                + [row[-1] for row in M[1:]] \
                + M[-1][-2::-1] \
                + [row[0] for row in M[-2:0:-1]]

            return ret + dfs([row[1:-1] for row in M[1:-1]])

        return dfs(matrix)

思路3:“削苹果”

  • 每次“削去”矩阵的第一层,然后将矩阵逆时针旋转 90 度,循环削去第一层;

  • 而逆时针旋转的操作在 python 中可以用一行代码完成!

Python
class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        ret = []
        while matrix:
            ret += list(matrix.pop(0))  # zip 后的结果是一个元组,这里转成 list,不过实际上不转换也可以;

            # 核心操作,逆时针旋转 90 度
            matrix = list(zip(*matrix))[::-1]
        
        return ret
# 图解 `list(zip(*matrix))[::-1]` 这一步做了什么:

# 假设已经 pop 了第一行,此时矩阵剩余的部分是:
[4 5 6]  # 记为 l1
[7 8 9]  # 记为 l2,如果有 n 行,则记为 ln

# zip(*matrix) 包含了两个知识点:一个是 zip() 函数,一个是 * 号的作用;
# zip(*matrix) 实际上等价于 zip(l1, l2, ..., ln)
# 经过这一步 matrix 将转化为(相当于做了一次转置)
[4 7]
[5 8]
[6 9]

# 这时再将 matrix 做一次逆序,就得到了逆时针旋转 90 度的结果
[6 9]
[5 8]
[4 7]
last modify