二叉树的最近公共祖先

last modify

问题简述

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

剑指 Offer 68 - II. 二叉树的最近公共祖先 - 力扣(LeetCode)

详细描述
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树

            3
          /   \
         5     1
        / \   / \
       6   2 0   8
          / \
         7   4

示例 1:
    输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
    输出: 3
    解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
    输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
    输出: 5
    解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:
    所有节点的值都是唯一的。
    p、q 为不同节点且均存在于给定的二叉树中。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-cha-shu-de-zui-jin-gong-gong-zu-xian-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路1

  • 记录 p, q 从上到下的路径,路径中最后一个相同节点即答案;

Python
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:

        # 后序遍历记录所有祖先
        def dfs(node, target, trace):
            if node is None:
                return False
            
            # 注意自己也是自己的祖先
            if node.val == target.val or dfs(node.left, target, trace) or dfs(node.right, target, trace):
                trace.append(node)
                return True
            else:
                return False
        
        # 分别找出 p 和 q 的祖先路径
        trace_p = []
        dfs(root, p, trace_p)
        # print(trace_p)
        trace_q = []
        dfs(root, q, trace_q)
        # print(trace_q)

        # 遍历找出最后一个相同的祖先
        ret = None
        for l, r in zip(trace_p[::-1], trace_q[::-1]):
            if l.val == r.val:
                ret = l
            else:
                break
        
        return ret

思路2

  • 考虑判断节点 x 是否为 p、q 的最近祖先需要哪些信息:

  • 文字描述太繁琐,直接看代码,非常清晰;

Python
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
        
        from dataclasses import dataclass

        @dataclass
        class Info:  # 判断当前节点是否为答案需要从子节点了解到的信息
            has_p: bool
            has_q: bool
            ret: TreeNode
        
        def dfs(x):
            if not x: return Info(False, False, None)

            # l, r = dfs(x.left), dfs(x.right)
            # 提前结束
            l = dfs(x.left)
            if l.ret: return l
            r = dfs(x.right)
            if r.ret: return r

            has_p = x.val == p.val or l.has_p or r.has_p
            has_q = x.val == q.val or l.has_q or r.has_q
            ret = None

            if has_p and has_q:
                ret = l.ret if r.ret is None else r.ret  # 左右子节点
                ret = x if ret is None else ret  # x 节点才是
            
            return Info(has_p, has_q, ret)
        
        return dfs(root).ret

Last updated