礼物的最大价值
给定 m*n 的整型数组 grid,求从左上角到右下角路线中和的最大值(每次向下或向右移动一格)
示例输入:
[1,3,1]
[1,5,1]
[4,2,1]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物Last updated
给定 m*n 的整型数组 grid,求从左上角到右下角路线中和的最大值(每次向下或向右移动一格)
示例输入:
[1,3,1]
[1,5,1]
[4,2,1]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物Last updated
class Solution:
def maxValue(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
# 初始化
for j in range(1, n):
grid[0][j] += grid[0][j - 1]
for i in range(1, m):
grid[i][0] += grid[i - 1][0]
for i in range(1, m):
for j in range(1, n):
grid[i][j] += max(grid[i][j - 1], grid[i - 1][j])
return grid[-1][-1]dp[j-1] + grid[i][j] 表示路线为 grid[i-1][j-1] → grid[i-1][j] → grid[i][j],即先往右再向下
dp[j] + grid[i][j] 表示路线为 grid[i-1][j-1] → grid[i][j-1] → grid[i][j],即先向下再往右
然后选择这两条路线中较大的更新 dp[j]class Solution:
def maxValue(self, grid: List[List[int]]) -> int:
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
# 初始化第一行的结果
dp = [grid[0][0]] + [0] * (n - 1)
for i in range(1, n):
dp[i] = dp[i - 1] + grid[0][i]
for i in range(1, m):
dp[0] = dp[0] + grid[i][0]
for j in range(1, n):
# dp[j-1] + grid[i][j] 表示 grid[i-1][j-1] → grid[i][j-1] → grid[i][j]
# dp[j] + grid[i][j] 表示 grid[i-1][j-1] → grid[i-1][j] → grid[i][j]
# 然后选择这两条路线中较大的更新 dp[j]
dp[j] = max(dp[j-1], dp[j]) + grid[i][j]
return dp[n-1]